skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Choudhary, D Prasad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Full-disk measurements of the solar magnetic field by the Helioseismic and Magnetic Imager (HMI) are often used for magnetic field extrapolations, but its limited spatial and spectral resolution can lead to significant errors. We compare HMI data with observations of NOAA 12104 by the Hinode Spectropolarimeter (SP) to derive a scaling curve for the magnetic field strength,B. The SP data in the Feilines at 630 nm were inverted with the SIR code. We find that the Milne–Eddington inversion of HMI underestimatesBand the line-of-sight flux, Φ, in all granulation surroundings by an average factor of 4.5 in plage and 9.2 in the quiet Sun in comparison to the SP. The deviation is inversely proportional to the magnetic fill factor,f, in the SP results. We derived a correction curve to match the HMIBwith the effective fluxBfin the SP data that scaled HMIBup by 1.3 on average. A comparison of non-force-free field extrapolations over a larger field of view without and with the correction revealed minor changes in connectivity and a proportional scaling of electric currents and Lorentz force (∝B∼ 1.3) and free energy (∝B2 ∼ 2). Magnetic field extrapolations of HMI vector data with large areas of plage and quiet Sun will underestimate the photospheric magnetic field strength by a factor of 5–10 and the coronal magnetic flux by at least a factor of 2. An HMI inversion including a fill factor would mitigate the problem. 
    more » « less
    Free, publicly-accessible full text available January 8, 2026